Advertisements
Advertisements
प्रश्न
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
उत्तर
\[ x^2 + 4 y^2 = 8 . . . \left( 1 \right)\]
\[ x^2 - 2 y^2 = 4 . . . \left( 2 \right)\]
\[\text { From (1) and (2) we get }\]
\[6 y^2 = 4\]
\[ \Rightarrow y^2 = \frac{2}{3}\]
\[ \Rightarrow y = \frac{\sqrt{2}}{\sqrt{3}} ory = \frac{- \sqrt{2}}{\sqrt{3}}\]
\[\text { From } (1),\]
\[ x^2 + \frac{8}{3} = 8\]
\[ \Rightarrow x^2 = \frac{16}{3}\]
\[ \Rightarrow x = \pm \frac{4}{\sqrt{3}}\]
\[\text { So },\left( x, y \right)=\left( \frac{4}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}} \right),\left( \frac{4}{\sqrt{3}}, \frac{- \sqrt{2}}{\sqrt{3}} \right),\left( \frac{- 4}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}} \right),\left( \frac{- 4}{\sqrt{3}}, - \frac{\sqrt{2}}{\sqrt{3}} \right)\]
\[\text { Consider point }\left( x_1 , y_1 \right)=\left( \frac{4}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}} \right)\]
\[\text { Differentiating (1) w.r.t.x, }\]
\[2x + 8y\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- x}{4y}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( \frac{4}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}} \right) = \frac{- \frac{4}{\sqrt{3}}}{4\frac{\sqrt{2}}{\sqrt{3}}} = \frac{- 1}{\sqrt{2}}\]
\[\text { Differentiating (2) w.r.t.x, }\]
\[2x - 4y\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x}{2y}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( \frac{4}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}} \right) = \frac{\frac{4}{\sqrt{3}}}{2\frac{\sqrt{2}}{\sqrt{3}}} = \sqrt{2}\]
\[\text { Now,} m_1 \times m_2 = \frac{- 1}{\sqrt{2}} \times \sqrt{2}\]
\[ \Rightarrow m_1 \times m_2 = - 1\]
\[\text { Since,} m_1 \times m_2 = - 1\]
\[\text { Hence,, the curves are orthogonal at }\left( \frac{4}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}} \right).\]
\[\text { Similarly, we can see that the curves are orthogonal in each possibility of }\left( x_1 , y_1 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.