हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point X2 = 4y at (2, 1) ? - Mathematics

Advertisements
Advertisements

प्रश्न

 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?

योग

उत्तर

\[x^2 = 4y\]

\[\text { Differentiating both sides w.r.t.x }, \]

\[2x = 4\frac{dy}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x}{2}\]

\[\text { Slope of tangent, }m= \left( \frac{dy}{dx} \right)_\left( 2, 1 \right) =\frac{2}{2}=1\]

\[\text { Given }\left( x_1 , y_1 \right) = \left( 2, 1 \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = 1\left( x - 2 \right)\]

\[ \Rightarrow y - 1 = x - 2\]

\[ \Rightarrow x - y - 1 = 0\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = - 1\left( x - 2 \right)\]

\[ \Rightarrow y - 1 = - x + 2\]

\[ \Rightarrow x + y - 3 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 3.15 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Which of the following represent the slope of normal?


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×