Advertisements
Advertisements
प्रश्न
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
उत्तर
Equation of curve is given by `sqrt(x) + sqrt(y)` = 4
Let (x1, y1) be the required point on the curve
∴ `sqrt(x)_1 + sqrt(y)_1` = 4
Differentiating both sides w.r.t. x1, we get
`"d"/("dx"_1) sqrt(x_1) + "d"/("dx"_1) sqrt(y_1) = "d"/("dx"_1) (4)`
⇒ `1/(2sqrt(x_1)) + 1/(2sqrt(y_1)) * ("d"y_1)/("dx"_1)` = 0
⇒ `1/sqrt(x_1) + 1/sqrt(y_1) * ("dy"_1)/("dx"_1)` = 0
⇒ `("dy"_1)/("d"x_1) = - sqrt(y_1)/sqrt(x_1)` .....(i)
Since the tangent to the given curve at (x1, y1) is equally inclined to the axes.
∴ Slope of the tangent `("dy"_1)/("dx"_1) = +- tan pi/4` = ±1
So, from equation (i) we get
`- sqrt(y_1)/sqrt(x_1)` = ±1
Squaring both sides, we get
`(y_1)/(x_1)` = 1
⇒ y1 = x1
Putting the value of y1 in the given equation of the curve.
`sqrt(x_1) + sqrt(y_1)` = 4
⇒ `sqrt(x_1) + sqrt(x_1)` = 4
⇒ `2sqrt(x_1)` = 4
⇒ `sqrt(x_1)` = 2
⇒ x1 = 4
Since y1 = x1
∴ y1 = 4
Hence, the required point is (4, 4).
APPEARS IN
संबंधित प्रश्न
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the angle of intersection of the curves y2 = x and x2 = y.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
At (0, 0) the curve y = x3 + x
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.