हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Points X = At2, Y = 2at at T = 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?

उत्तर

\[x = a t^2 \text { and } y = 2at\]

\[\frac{dx}{dt} = 2at \text { and } \frac{dy}{dt} = 2a\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}\]

\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_{t = 1} =\frac{1}{1}=1\]

\[\text { Now }, \left( x_1 , y_1 \right) = \left( a, 2a \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 2a = 1\left( x - a \right)\]

\[ \Rightarrow y - 2a = x - a\]

\[ \Rightarrow x - y + a = 0\]

Equation of normal:

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 2a = - 1 \left( x - a \right)\]

\[ \Rightarrow y - 2a = - x + a\]

\[ \Rightarrow x + y = 3a\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 5.3 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


At (0, 0) the curve y = x3 + x


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×