Advertisements
Advertisements
प्रश्न
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
उत्तर
\[\text { We have, } \frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 . . . \left( 1 \right)\]
\[\text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1 . . . \left( 2 \right)\]
\[\text { Now we can find the slope of both the curve by differentiating w . r . t x }\]
\[ \Rightarrow \frac{2x}{a^2 + \lambda_1} + \frac{2y\frac{dy}{dx}}{b^2 + \lambda_1} = 0 \text { and } \frac{2x}{a^2 + \lambda_2} + \frac{2y\frac{dy}{dx}}{b^2 + \lambda_2} = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{x}{y} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1} \text { and } \frac{dy}{dx} = - \frac{x}{y} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}\]
\[ \Rightarrow m_1 = - \frac{x}{y} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1} \text { and } m_2 = - \frac{x}{y} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}\]
\[\text { Subtracting} \left( 2 \right) \text { from } \left( 1 \right), \text { we get }, \]
\[ x^2 \left( \frac{1}{a^2 + \lambda_1} - \frac{1}{a^2 + \lambda_2} \right) + y^2 \left( \frac{1}{b^2 + \lambda_1} - \frac{1}{b^2 + \lambda_2} \right) = 0\]
\[ \Rightarrow \frac{x^2}{y^2} = \frac{\lambda_2 - \lambda_1}{\left( b^2 + \lambda_1 \right)\left( b^2 + \lambda_2 \right)} \times \frac{1}{\frac{\lambda_1 - \lambda_2}{\left( a^2 + \lambda_1 \right)\left( a^2 + \lambda_2 \right)}}\]
\[\text { Now,} \]
\[ m_1 \times \times m_2 = \frac{x^2}{y^2} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}\]
\[ = \frac{\lambda_2 - \lambda_1}{\left( b^2 + \lambda_1 \right)\left( b^2 + \lambda_2 \right)} \times \frac{\left( a^2 + \lambda_1 \right)\left( a^2 + \lambda_2 \right)}{\lambda_1 - \lambda_2} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}\]
\[ = - 1\]
\[\text { hence,} \left( 1 \right) \text { and } \left( 2 \right) \text { cuts orthogonally } . \]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
Let `y = f(x)` be the equation of the curve, then equation of normal is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.