हिंदी

Find the Equation of the Normal to the Curve Ay2 = X3 At the Point (Am2, Am3) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?

उत्तर

\[a y^2 = x^3 \]

\[\text {Differentiating both sides w.r.t.x }, \]

\[2ay \frac{dy}{dx} = 3 x^2 \]

\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2}{2ay}\]

\[\text { Slope of tangent } = \left( \frac{dy}{dx} \right)_\left( a m^2 , a m^3 \right) =\frac{3 a^2 m^4}{2 a^2 m^3}=\frac{3m}{2}\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( a m^2 , a m^3 \right)\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - a m^3 = \frac{- 2}{3m} \left( x - a m^2 \right)\]

\[ \Rightarrow 3my - 3a m^4 = - 2x + 2a m^2 \]

\[ \Rightarrow 2x + 3my - a m^2 \left( 2 + 3 m^2 \right) = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 7 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


Let `y = f(x)` be the equation of the curve, then equation of normal is


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×