हिंदी

The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.

विकल्प

  • 1

  • `1/3`

  • 2

  • `1/2`

MCQ
रिक्त स्थान भरें

उत्तर

The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is 1.

Explanation:

Let (x1, y1) be the point on the given curve 3y = 6x – 5x3 at which the normal passes through the origin.

Then we have `("dy"/"dx")_(x_1, y_1)`

= `2 - 5x_1^2`.

Again the equation of the normal at (x1, y1) passing through the origin gives `2 - 5x_1^2`

= `(-x_1)/y_1`

= `(-3)/(6 - 5x_1^2)`.

Since x1 = 1 satisfies the equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Solved Examples [पृष्ठ १३२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Solved Examples | Q 19 | पृष्ठ १३२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = x and x2 = y.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×