Advertisements
Advertisements
प्रश्न
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
विकल्प
1
`1/3`
2
`1/2`
उत्तर
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is 1.
Explanation:
Let (x1, y1) be the point on the given curve 3y = 6x – 5x3 at which the normal passes through the origin.
Then we have `("dy"/"dx")_(x_1, y_1)`
= `2 - 5x_1^2`.
Again the equation of the normal at (x1, y1) passing through the origin gives `2 - 5x_1^2`
= `(-x_1)/y_1`
= `(-3)/(6 - 5x_1^2)`.
Since x1 = 1 satisfies the equation.
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Find the angle of intersection of the curves y2 = x and x2 = y.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point