Advertisements
Advertisements
प्रश्न
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
उत्तर
Equation of the curve is given by
`"y" = (("x" - 7))/(("x"-2)("x"-3)` ....(i)
The given curve cuts the x-axis so, y = 0
Putting the value y=0 in (i) we get x=7.
Differentiate (i) w.r.t. x, then
`(d"y")/(d"x") = (("x"-2)·("x"-3)-("x"-7)·(2"x"-5))/(("x"-2)^2 .("x"-3)^2`
The slope of the tangent to (i) at point (7,0) is given by
`"m"_t` = \[\left.\frac{dy}{dx}\right|_{(7,0)}\] = `(20)/(400) = (1)/(20)`
Equation of the tangent to (i) at point (7,0) is given by
`("y"-0) = (1)/(20) ("x"-7) ⇒ "x"-20"y"-7 = 0`
We know,
`"m"_t ·"m"_n = -1`
⇒ `"m"_n = (-1)/(1/20) = -20`
Therefore, slope of the normal to (i) at point (7,0) is given by
mn = − 20
Equation of the normal to (i) at point (7,0) is given by
Equation of the normal is (y - 0) = - 20( x - 7) ⇒ 20x + y - 140 = 0.
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Let `y = f(x)` be the equation of the curve, then equation of normal is
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.