हिंदी

Find the Point on the Curve Y = X2 − 2x + 3, Where the Tangent is Parallel to X-axis ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?

उत्तर

The slope of the x-axis is 0.
Now, let (x1y1) be the required point.
Here,

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence,} y_1 = {x_1}^2 - 2 x_1 + 3 . . . \left( 1 \right)\]

\[\text { Now }, y = x^2 - 2x + 3\]

\[\frac{dy}{dx} = 2x - 2\]

\[\text { Slope of the tangent at }\left( x, y \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =2 x_1 - 2\]

\[\text { Given }:\]

\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)=\text { Slope of thex-axis }\]

\[ = 2 x_1 - 2 = 0\]

\[ \Rightarrow x_1 = 1\]

\[\text { and }\]

\[ y_1 = 1 - 2 + 3 = 2 [\text { From } (1)]\]

\[ \therefore \text { Required point }=\left( x_1 , y_1 \right)=\left( 1, 2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.4 | Q 1 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The curve y = `x^(1/5)` has at (0, 0) ______.


At (0, 0) the curve y = x3 + x


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×