हिंदी

Find the Equation of the Normal to the Curve X2 + 2y2 − 4x − 6y + 8 = 0 at the Point Whose Abscissa is 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?

उत्तर

Abscissa means the horizontal co-ordiante of a point.
Given that abscissa = 2.
i.e., x = 2

\[x^2 + 2 y^2 - 4x - 6y + 8 = 0 . . . \left( 1 \right)\]

\[\text { Differentiating both sides w.r.t.x }, \]

\[2x + 4y\frac{dy}{dx} - 4 - 6\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( 4y - 6 \right) = 4 - 2x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{4 - 2x}{4y - 6} = \frac{2 - x}{2y - 3}\]

\[\text { When }x=2,\text {  from } (1), \text { we get }\]

\[4 + 2 y^2 - 8 - 6y + 8 = 0\]

\[ \Rightarrow 2 y^2 - 6y + 4 = 0\]

\[ \Rightarrow y^2 - 3y + 2 = 0\]

\[ \Rightarrow \left( y - 1 \right)\left( y - 2 \right) = 0\]

\[ \Rightarrow y = 1 ory = 2\]

\[\text { Case }-1:y = 1\]

\[\text { Slope of tangent } = \left( \frac{dy}{dx} \right)_\left( 2, 1 \right) =\frac{0}{- 1}=0\]

\[\left( x_1 , y_1 \right) = \left( 2, 1 \right)\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = \frac{- 1}{0} \left( x - 2 \right)\]

\[ \Rightarrow x - 2 = 0\]

\[ \Rightarrow x = 2\]

\[\text { Case}-2:y = 2\]

\[\text { Slope of tangent} = \left( \frac{dy}{dx} \right)_\left( 2, 2 \right) =\frac{0}{1}=0\]

\[\left( x_1 , y_1 \right) = \left( 2, 2 \right)\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 2 = \frac{- 1}{0} \left( x - 2 \right)\]

\[ \Rightarrow x - 2 = 0\]

\[ \Rightarrow x = 2\]

In both cases, the equation of normal is x = 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 6 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The equation of the normal to the curve y = sinx at (0, 0) is ______.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×