Advertisements
Advertisements
प्रश्न
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
उत्तर
The equation of the curve is y = x3.
On differentiating with respect to x, we get:
APPEARS IN
संबंधित प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
Which of the following represent the slope of normal?
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.