हिंदी

At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis? - Mathematics

Advertisements
Advertisements

प्रश्न

At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?

योग

उत्तर

Given that the equation of the curve is

x2 + y2 – 2x – 4y + 1 = 0  ....(i)

Differentiating both sides w.r.t. x, we have

`2x + 2y * "dy"/"dx" - 2 - 4 * "dy"/"dx"` = 0

⇒ `(2y - 4) "dy"/"dx"` = 2 – 2x

⇒ `"dy"/"dx" = (2 - 2x)/(2y - 4)`  ....(ii)

Since the tangent to the curve is parallel to the y-axis.

∴ Slope `"dy"/"dx" = tan  pi/2`

= `oo`

= `1/0`

So, from equation (ii) we get

`(2 - 2x)/(2y - 4) = 1/0`

⇒ 2y – 4 = 0

⇒ y = 2

Now putting the value of y in equation (i), we get

⇒ x2 + (2)2 – 2x – 8 + 1 = 0

⇒ x2 – 2x + 4 – 8 + 1 = 0

⇒ x2 – 2x – 3 = 0

⇒ x2 – 3x + x – 3 = 0

⇒ x(x – 3) + 1(x – 3) = 0

⇒ (x – 3)(x + 1) = 0

⇒ x = – 1 or 3

Hence, the required points are (– 1, 2) and (3, 2).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 18 | पृष्ठ १३६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×