Advertisements
Advertisements
प्रश्न
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
उत्तर
Given that the equation of the curve is
x2 + y2 – 2x – 4y + 1 = 0 ....(i)
Differentiating both sides w.r.t. x, we have
`2x + 2y * "dy"/"dx" - 2 - 4 * "dy"/"dx"` = 0
⇒ `(2y - 4) "dy"/"dx"` = 2 – 2x
⇒ `"dy"/"dx" = (2 - 2x)/(2y - 4)` ....(ii)
Since the tangent to the curve is parallel to the y-axis.
∴ Slope `"dy"/"dx" = tan pi/2`
= `oo`
= `1/0`
So, from equation (ii) we get
`(2 - 2x)/(2y - 4) = 1/0`
⇒ 2y – 4 = 0
⇒ y = 2
Now putting the value of y in equation (i), we get
⇒ x2 + (2)2 – 2x – 8 + 1 = 0
⇒ x2 – 2x + 4 – 8 + 1 = 0
⇒ x2 – 2x – 3 = 0
⇒ x2 – 3x + x – 3 = 0
⇒ x(x – 3) + 1(x – 3) = 0
⇒ (x – 3)(x + 1) = 0
⇒ x = – 1 or 3
Hence, the required points are (– 1, 2) and (3, 2).
APPEARS IN
संबंधित प्रश्न
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is