Advertisements
Advertisements
प्रश्न
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
उत्तर
We have equation of the curve 3x2 – y2 = 8
Differentiating both sides w.r.t. x, we get
⇒ `6x - 2y * "dy"/"dx"` = 0
⇒ `-2y "dy"/"dx"` = – 6x
⇒ `"dy"/"dx" = (3x)/y`
Slope of the tangent to the given curve = `(3x)/y`
∴ Slope of the normal to the curve = `- 1/((3x)/y) = - y/(3x)`
Now differentiating both sides the given line x + 3y = 4
⇒ `1 + 3 * "dy"/"dx"` = 0
⇒ `"dy"/"dx" = - 1/3`
Since the normal to the curve is parallel to the given line x + 3y = 4.
∴ `- y/(3x) = - 1/3`
⇒ y = x
Putting the value of y in 3x2 – y2 = 8, we get
3x2 – x2 = 8
⇒ 2x2 = 8
⇒ x2 = 4
⇒ x = ± 2
∴ y = ± 2
∴ The points on the curve are (2, 2) and (– 2, – 2).
Now equation of the normal to the curve at (2, 2) is
y – 2 = `- 1/3 (x - 2)`
⇒ 3y – 6 = – x + 2
⇒ x + 3y = 8
At (– 2, – 2) y + 2 = `- 1/3 (x + 2)`
⇒ 3y + 6 = – x – 2
⇒ x + 3y = – 8
Hence, the required equations are x + 3y = 8 and x + 3y = – 8 or x + 3y = ± 8.
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.