Advertisements
Advertisements
प्रश्न
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
उत्तर
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.