Advertisements
Advertisements
प्रश्न
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
विकल्प
Touch each other
Cut at right angle
Cut at an angle `pi/3`
Cut at an angle `pi/4`
उत्तर
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 cut at right angle.
Explanation:
From first equation of the curve
We have 3x2 – 3y2 – 6xy `"dy"/"dx"` = 0
⇒ `"dy"/"dx" = (x^2 - y^2)/(2xy)` = (m1) say and second equation of the curve gives
`6xy + 3x^2 "dy"/"dx" - 3y^2 "dy"/"dx"` = 0
⇒ `"dy"/"dx" = (-2y)/(x^2 - y^2)` = (m2) say
Since m1 . m2 = –1.
APPEARS IN
संबंधित प्रश्न
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.