हिंदी

Find the Angle of Intersection of the Following Curve 2y2 = X3 and Y2 = 32x ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?

उत्तर

\[\text { Given curves are },\]

\[2 y^2 = x^3 . . . \left( 1 \right)\]

\[ y^2 = 32x . . . \left( 2 \right) \]

\[\text { From these two equations we get }\]

\[2\left( 32x \right) = x^3 \]

\[ \Rightarrow 64x = x^3 \]

\[ \Rightarrow x\left( x^2 - 64 \right) = 0\]

\[ \Rightarrow x = 0, 8 , - 8\]

\[\text { Substituting the value of x in } \left( 2 \right) \text { we get }, \]

\[ y_1 = 0, 16, - 16\]

\[ \therefore \left( x_1 , y_1 \right)=\left( 0, 0 \right),\left( 8, 16 \right) or \left( 8, - 16 \right) \]

\[\text { Differentiating }(1) w.r.t.x,\]

\[4y \frac{dy}{dx} = 3 x^2 \]

\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2}{4y} . . . \left( 3 \right)\]

\[\text { Differenntiating (2) w.r.t.x },\]

\[2y\frac{dy}{dx} = 32\]

\[ \Rightarrow \frac{dy}{dx} = \frac{16}{y} . . . \left( 4 \right)\]

\[\text { Case } - 1:\left( x, y \right)=\left( 0, 0 \right)\]

\[\text { From }\left( 3 \right) \text { we have, } m_1 = \frac{0}{0} \]

\[ \therefore\text {  We cannot determine theta in this case }.\]

\[\text { Case}-2:\left( x, y \right)=\left( 8, 16 \right)\]

\[\text { From }\left( 3 \right) \text { we have,} m_1 = \frac{192}{64} = 3\]

\[\text { From} \left( 4 \right) \text { we have,} m_2 = \frac{16}{16} = 1\]

\[\text { Now,} \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{3 - 1}{1 + 3} \right| = \frac{2}{4} = \frac{1}{2}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{1}{2} \right)\]

\[\text { Case}- 3:\left( x_1 , y_1 \right)=\left( 8, - 16 \right)\]

\[\text { From } \left( 3 \right) \text { we have }, m_1 = \frac{192}{- 64} = - 3\]

\[\text { From } \left( 4 \right) \text { we have }, m_2 = \frac{16}{- 16} = - 1\]

\[\text { Now, } \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{- 3 + 1}{1 + 3} \right| = \frac{2}{4} = \frac{1}{2}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{1}{2} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.3 | Q 1.3 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×