हिंदी

The Slope of the Normal to the Curve Y = 2x2 + 3 Sin X at X = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`

उत्तर

The correct answer is D.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.3 [पृष्ठ २१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.3 | Q 26 | पृष्ठ २१३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×