हिंदी

The Slope of the Tangent to the Curve X = T2 + 3t − 8, Y = 2t2 − 2t − 5 at the Point (2, −1) is - Mathematics

Advertisements
Advertisements

प्रश्न

The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .

विकल्प

  • \[\frac{22}{7}\]

  • \[\frac{6}{7}\]

  • \[\frac{7}{6}\]

  • \[- \frac{6}{7}\]

MCQ

उत्तर

\[\frac{6}{7}\]

 

Given:
x = t2 + 3t − 8 and y = 2t2 − 2t − 5

\[\Rightarrow \frac{dx}{dt} = 2t + 3 \text { and } \frac{dy}{dt} = 4t - 2\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4t - 2}{2t + 3}\]

\[\text { The given point is } (2, -1).\]

\[\therefore x = 2 \text { and } y = -1\]

\[\text { Now }, \]

\[ t^2 + 3t - 8 = 2 \text { and }2 t^2 - 2t - 5 = - 1\]

\[ \Rightarrow t^2 + 3t - 10 = 0 \text { and } t^2 - t - 2 = 0\]

\[ \Rightarrow \left( t + 5 \right)\left( t - 2 \right) = 0 \text { and } \left( t + 1 \right)\left( t - 2 \right) = 0\]

\[ \Rightarrow t = - 5, 2 \text { and }t = - 1, 2\]

\[\text { We can see that t = 2 satisfies both of these }.\]

\[ \therefore \text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_{t = 2} =\frac{8 - 2}{4 + 3}=\frac{6}{7}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.5 | Q 26 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


The curve y = `x^(1/5)` has at (0, 0) ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×