हिंदी

Find the Angle of Intersection of the Following Curve X 2 a 2 + Y 2 B 2 = 1 and X2 + Y2 = Ab ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?

उत्तर

\[\text { Given curves are,}\]

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 . . . \left( 1 \right)\]

\[ x^2 + y^2 = ab . . . \left( 2 \right)\]

\[\text { Multiplying } (2) by\frac{1}{a^2},\]

\[\frac{x^2}{a^2} + \frac{y^2}{a^2} = \frac{b}{a} . . . \left( 3 \right)\]

\[\text { Subtracting (1) from (3), we get }\]

\[\frac{y^2}{a^2} - \frac{y^2}{b^2} = \frac{b}{a} - 1\]

\[ \Rightarrow y^2 \left( \frac{b^2 - a^2}{a^2 b^2} \right) = \frac{b - a}{a}\]

\[ \Rightarrow y^2 = \frac{b - a}{a} \times \frac{a^2 b^2}{\left( b + a \right)\left( b - a \right)} = \frac{a b^2}{b + a}\]

\[ \Rightarrow y = \pm b\sqrt{\frac{a}{b + a}}\]

\[\text { Substituting this in } (3),\]

\[\frac{x^2}{a^2} + \frac{a b^2}{\left( b + a \right)\left( a^2 \right)} = \frac{b}{a}\]

\[ \Rightarrow \left( a + b \right) x^2 + a b^2 = a b^2 + a^2 b\]

\[ \Rightarrow x^2 = \frac{a^2 b}{a + b}\]

\[ \Rightarrow x = \pm a\sqrt{\frac{b}{a + b}}\]

\[ \therefore \left( x, y \right)=\left( \pm a\sqrt{\frac{b}{a + b}}, \pm b\sqrt{\frac{a}{b + a}} \right)\]

\[\text { Now },\left( x, y \right)=\left( a\sqrt{\frac{b}{a + b}}, b\sqrt{\frac{a}{b + a}} \right)\]

\[\text { Differentiating (1) w.r.t.x,we get,}\]

\[\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x b^2}{a^2 y}\]

\[ \Rightarrow m_1 = \frac{- a b^2 \sqrt{\frac{b}{a + b}}}{a^2 b\sqrt{\frac{a}{b + a}}} = \frac{- b\sqrt{b}}{a\sqrt{a}}\]

\[\text { Differenntiating (2) w.r.t.x,we get, }\]

\[2x + 2y\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x}{y}\]

\[ \Rightarrow m_2 = \frac{- a\sqrt{\frac{b}{a + b}}}{b\sqrt{\frac{a}{b + a}}} = \frac{- a\sqrt{b}}{b\sqrt{a}}\]

\[\text { We have,} \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{- b\sqrt{b}}{a\sqrt{a}} + \frac{a\sqrt{b}}{b\sqrt{a}}}{1 + \left( \frac{b\sqrt{b}}{a\sqrt{a}} \right)\left( \frac{a\sqrt{b}}{b\sqrt{a}} \right)} \right| = \frac{\frac{- b^2 \sqrt{ab} + a^2 \sqrt{ab}}{a^2 b}}{\frac{a^2 b + a b^2}{a^2 b}} = \frac{\sqrt{ab}\left( a + b \right)\left( a - b \right)}{a^2 b} \times \frac{a^2 b}{ab\left( a + b \right)} = \frac{a - b}{\sqrt{ab}}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{a - b}{\sqrt{ab}} \right)\]

\[ {\text { Similarly, we can prove that }\theta=tan}^{- 1} \left( \frac{a - b}{\sqrt{ab}} \right) \text { for all possibilities of } \left( x, y \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.3 | Q 1.5 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×