Advertisements
Advertisements
प्रश्न
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
उत्तर
The equation of the given curve is
`x^2/a^2−y^2/b^2=1`
Differentiating with respect to x, we get:
`dy/dx=b^2/a^2 x/y`
`(dy/dx)_(sqrt2a,b)=(sqrt2b)/a`
Therefore, the slope of the tangent is `(sqrt2b)/a` and of the normal is `-a/(sqrtb)`
Thus, the equation of the tangent is
`y-b=(sqrt2b)/a(x-sqrt2a)`
`=>sqrt2bx-ay-ab=0`
Equation of the normal is
`y−b=−a/(sqrt2b)(x−sqrt2a)`
`⇒ax+sqrt2by−sqrt2(a^2+b^2)=0`
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
At (0, 0) the curve y = x3 + x
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.