Advertisements
Advertisements
प्रश्न
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
उत्तर
\[\text { Let the given curves intersect at }\left( x_1 , y_1 \right)\]
\[ x^3 - 3x y^2 = - 2 . . . \left( 1 \right)\]
\[3 x^2 y - y^3 = 2 . . . \left( 2 \right)\]
\[\text { Differentiating (1) w.r.t.x,}\]
\[3 x^2 - 3 y^2 - 6xy\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2 - 3 y^2}{6xy} = \frac{x^2 - y^2}{2xy}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{{x_1}^2 - {y_1}^2}{2 x_1 y_1}\]
\[\text { Differenntiating (2) w.r.t.x, }\]
\[3 x^2 \frac{dy}{dx} + 6xy - 3 y^2 \frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx}\left( 3 x^2 - 3 y^2 \right) = - 6xy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 6xy}{3 x^2 - 3 y^2} = \frac{- 2xy}{x^2 - y^2}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{- 2 x_1 y_1}{{x_1}^2 - {y_1}^2}\]
\[\text { Now,} m_1 \times m_2 = \frac{{x_1}^2 - {y_1}^2}{2 x_1 y_1} \times \frac{- 2 x_1 y_1}{{x_1}^2 - {y_1}^2}\]
\[ \Rightarrow m_1 \times m_2 = - 1\]
\[Since, m_1 \times m_2 = - 1\]
So, the given curves intersect orthogonally.
APPEARS IN
संबंधित प्रश्न
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.