Advertisements
Advertisements
प्रश्न
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
विकल्प
0°
45°
90°
none of these
उत्तर
90°
\[\text { Given }: \]
\[xy = a^2 . . . \left( 1 \right)\]
\[ x^2 - y^2 = 2 a^2 . . . \left( 2 \right)\]
\[\text { Let} \left( x_1 , y_1 \right)\text {be the point of intersection }.\]
\[\text { On differentiating (1) w.r.t. x, we get }\]
\[x\frac{dy}{dx} + y = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{- y_1}{x_1}\]
\[\text { On differentiating (2) w.r.t.x, we get }\]
\[2x - 2y \frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x}{y}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{x_1}{y_1}\]
\[\text { Now,} \]
\[ m_1 \times m_2 = \frac{- y_1}{x_1} \times \frac{x_1}{y_1}\]
\[ \Rightarrow m_1 \times m_2 = - 1\]
\[ \because m_1 \times m = - 1\]
\[\text { So, the angle between the curves is } 90°\]
APPEARS IN
संबंधित प्रश्न
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.