मराठी

The Angle of Intersection of the Curves Xy = A2 and X2 − Y2 = 2a2 is (A) 0° (B) 45° (C) 90° (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .

पर्याय

  • 45°

  • 90°

  • none of these

MCQ

उत्तर

90°

 

\[\text { Given }: \]

\[xy = a^2 . . . \left( 1 \right)\]

\[ x^2 - y^2 = 2 a^2 . . . \left( 2 \right)\]

\[\text { Let} \left( x_1 , y_1 \right)\text {be the point of intersection }.\]

\[\text { On differentiating (1) w.r.t. x, we get }\]

\[x\frac{dy}{dx} + y = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{- y_1}{x_1}\]

\[\text { On differentiating (2) w.r.t.x, we get }\]

\[2x - 2y \frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x}{y}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{x_1}{y_1}\]

\[\text { Now,} \]

\[ m_1 \times m_2 = \frac{- y_1}{x_1} \times \frac{x_1}{y_1}\]

\[ \Rightarrow m_1 \times m_2 = - 1\]

\[ \because m_1 \times m = - 1\]

\[\text { So, the angle between the curves is } 90°\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 14 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


At (0, 0) the curve y = x3 + x


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×