Advertisements
Advertisements
प्रश्न
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
पर्याय
1
`-6`
6
0
उत्तर
`6`
\[\text { Given }: \]
\[ay + x^2 = 7 . . . \left( 1 \right)\]
\[ x^3 = y . . . \left( 2 \right)\]
\[\text { Point }=\left( 1, 1 \right)\]
\[\text { On differentiating (1) w.r.t.x, we get }\]
\[a\frac{dy}{dx} + 2x = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2x}{a}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = \frac{- 2}{a}\]
\[\text { Again, on differentiating (2) w.r.t.x, we get }\]
\[3 x^2 = \frac{dy}{dx}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = 3\]
\[\text { It is giventhat the curves are orthogonal at the given point }.\]
\[ \therefore m_1 \times m_2 = - 1\]
\[ \Rightarrow \frac{- 2}{a} \times 3 = - 1\]
\[ \Rightarrow a = 6\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.