Advertisements
Advertisements
प्रश्न
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
उत्तर
\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 . . . \left( 1 \right)\]
\[xy = c^2 . . . \left( 2 \right)\]
\[\text { Let the curves intersect orthogonally at }\left( x_1 , y_1 \right).\]
\[\text { On differentiating (1) on both sides w.r.t.x, we get }\]
\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x b^2}{a^2 y}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{x_1 b^2}{a^2 y_1}\]
\[\text { On differentiating (2) on both sides w.r.t.x, we get }\]
\[x\frac{dy}{dx} + y = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{- y_1}{x_1}\]
\[\text { It is given that the curves intersect orhtogonally at }\left( x_1 , y_1 \right).\]
\[ \therefore m_1 \times m_2 = - 1\]
\[ \Rightarrow \frac{x_1 b^2}{a^2 y_1} \times \frac{- y_1}{x_1} = - 1\]
\[ \Rightarrow a^2 = b^2 \]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.