मराठी

Find the equation of the tangent and the normal to the following curve at the indicated point x 2 a 2 + y 2 b 2 = 1 a t ( a cos θ , b sin θ ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?

बेरीज

उत्तर

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]

\[\text { Differentiating both sides w.r.t. x }, \]

\[ \Rightarrow \frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{- 2x}{a^2}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x b^2}{y a^2}\]

\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( a \cos \theta, b \sin \theta \right) =\frac{- a \cos \theta \left( b^2 \right)}{b \sin \theta \left( a^2 \right)}=\frac{- b \cos \theta}{a \sin \theta}\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( a \cos \theta, b \sin \theta \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - b \sin \theta = \frac{- b \cos \theta}{a \sin \theta}\left( x - a \cos \theta \right)\]

\[ \Rightarrow ay \sin \theta - \text { ab }\sin^2 \theta = - bx \cos \theta + ab \cos^2 \theta\]

\[ \Rightarrow bx \cos \theta + ay \sin \theta = ab\]

\[\text{ Dividing by ab},\]

\[ \Rightarrow \frac{x}{a}\cos \theta + \frac{y}{b}\sin \theta = 1\]

\[\text { Equation of normal is} ,\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - b \sin \theta = \frac{a \sin \theta}{b \cos \theta}\left( x - a \cos \theta \right)\]

\[ \Rightarrow by \cos \theta - b^2 \sin \theta \cos \theta = ax \sin \theta - a^2 \sin \theta \cos \theta\]

\[ \Rightarrow ax \sin \theta - by \cos \theta = \left( a^2 - b^2 \right)\sin \theta \cos \theta\]

\[\text { Dividing by }\sin \theta \cos \theta, \]

\[ax \sec \theta - \text { by }\ cosec \theta = \left( a^2 - b^2 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 3.07 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


The equation of the normal to the curve y = sinx at (0, 0) is ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×