मराठी

Write the Angle Made by the Tangent to the Curve X = Et Cos T, Y = Et Sin T at T = π 4 with the X-axis ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?

बेरीज

उत्तर

\[\text { Here }, \]

\[x = e^t \cos t \text { and } y = e^t \sin t\]

\[\frac{dx}{dt} = e^t cos t - e^t \sin t \text { and }\frac{dy}{dt} = e^t \sin t + e^t \cos t\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{e^t \sin t + e^t \cos t}{e^t cos t - e^t \sin t} = \frac{\sin t + \cos t}{\cos t - \sin t}\]

\[\text { Now, } \]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_{t = \frac{\pi}{4}} =\frac{\sin \frac{\pi}{4} + \cos \frac{\pi}{4}}{\cos \frac{\pi}{4} - \sin \frac{\pi}{4}}=\frac{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}}=\frac{\frac{2}{\sqrt{2}}}{0}=\infty\]

\[\text { Let }\theta \text { be the angle made by the tangent with the x-axis.}\]

\[ \therefore \tan\theta=\infty\]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.4 | Q 9 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the angle of intersection of the curves y2 = x and x2 = y.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Let `y = f(x)` be the equation of the curve, then equation of normal is


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×