Advertisements
Advertisements
प्रश्न
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
उत्तर
\[\text { Given }: \]
\[ y^2 = 4x . . . \left( 1 \right)\]
\[ x^2 = 2y - 3 . . . \left( 2 \right)\]
\[\text { On differentiating (1) w.r.t.x, we get }\]
\[2y\frac{dy}{dx} = 4\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2}{y}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 2 \right) = \frac{2}{2} = 1\]
\[\text { On differentiating (2) w.r.t.x, we get }\]
\[2x = 2\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = x\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 2 \right) = 1\]
\[\text { Thus, we get }\]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]
\[ \Rightarrow \tan \theta = \left| \frac{1 - 1}{1 + 1} \right|\]
\[ \Rightarrow \tan \theta = 0\]
\[ \Rightarrow \theta = 0^o\]
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.