मराठी

Write the Slope of the Normal to the Curve Y = 1 X at the Point ( 3 , 1 3 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?

उत्तर

\[\text { Given }: \]

\[y = \frac{1}{x}\]

\[\text { On differentiating both sides w.r.t.x, we get }\]

\[\frac{dy}{dx} = \frac{- 1}{x^2}\]

\[\text { Now }, \]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( 3, \frac{1}{3} \right) =\frac{- 1}{9}\]

\[\text { Slope of the normal } =\frac{- 1}{\text { Slope of tangent }}=\frac{- 1}{\left( \frac{- 1}{9} \right)}= 9\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.4 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.4 | Q 15 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


Let `y = f(x)` be the equation of the curve, then equation of normal is


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×