मराठी

The Normal to the Curve X2 = 4y Passing Through (1, 2) is - Mathematics

Advertisements
Advertisements

प्रश्न

The normal to the curve x2 = 4y passing through (1, 2) is _____________ .

पर्याय

  • x + y = 3

  • x − y = 3

  • x + y = 1

  • x − y = 1

  • none of these

MCQ

उत्तर

\[\text { Given }: \]

\[ x^2 = 4y\]

\[ \Rightarrow 2x = 4\frac{dy}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2x}{4} = \frac{x}{2}\]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( 1, 2 \right) =\frac{1}{2}\]

\[\text { Slope of the normal,}m=\frac{- 1}{\text{ Slope of the tangent }}=\frac{- 1}{\frac{1}{2}}=-2\]

\[\text { Also }, \]

\[\left( x_1 , y_1 \right) = \left( 1, 2 \right)\]

\[ \therefore \text { Equation of the normal }\]

\[ = y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 2 = - 2 \left( x - 1 \right)\]

\[ \Rightarrow y - 2 = - 2x + 2\]

\[ \Rightarrow 2x + y = 4\]

shaalaa.com

Notes

None of the given options is correct.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 29 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The equation of normal to the curve y = tanx at (0, 0) is ______.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


Let `y = f(x)` be the equation of the curve, then equation of normal is


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×