Advertisements
Advertisements
प्रश्न
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
उत्तर
Given circles are xy = 4 .....(i)
And x2 + y2 = 8 .....(ii)
Differentiating equation (i) w.r.t., x
⇒
⇒ m1 =
Where, m1 is the slope of the tangent to the curve.
Differentiating equation (ii) w.r.t. x
⇒
⇒ m2 =
Where, m2 is the slope of the tangent to the circle.
To find the point of contact of the two circles
m1 = m2
⇒
⇒ x2 = y2
Putting the value of y2 in equation (ii)
x2 + x2 = 8
⇒ 2x2 = 8
⇒ x2 = 4
∴ x = ± 2
∵ x2 = y2
⇒ y = ± 2
∴ The point of contact of the two circles are (2, 2) and (– 2, 2).
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the equation of the tangent to the curve
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ =
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the angle of intersection of the following curve
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the angle of intersection of the curves y2 = x and x2 = y.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
At (0, 0) the curve y = x3 + x
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is