मराठी

The Point on the Curve Y = 6x − X2 at Which the Tangent to the Curve is Inclined at π/4 to the Line X + Y= 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .

पर्याय

  • (−3, −27)

  • (3, 9)

  • (7/2, 35/4)

  • (0, 0)

MCQ

उत्तर

`(3, 9)`

 

Let (x1y1) be the point where the given curve intersect the given line at the given angle.

\[\text { Since, the point lie on the curve } . \]

\[\text { Hence }, y_1 = 6 x_1 - {x_1}^2 \]

\[\text { Now,} y = 6x - x^2 \]

\[ \Rightarrow \frac{dy}{dx} = 6 - 2x\]

\[ \Rightarrow m_1 = 6 - 2 x_1 \]

\[\text { and }\]

\[x + y = 0\]

\[ \Rightarrow 1 + \frac{dy}{dx} = 0 \]

\[ \Rightarrow \frac{dy}{dx} = - 1\]

\[ \Rightarrow m_2 = - 1\]

\[\text { It is given that the angle between them is }\frac{\pi}{4}.\]

\[ \therefore \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]

\[ \Rightarrow \tan \frac{\pi}{4} = \left| \frac{6 - 2 x_1 + 1}{1 - 6 + 2 x_1} \right|\]

\[ \Rightarrow 1 = \left| \frac{7 - 2 x_1}{2 x_1 - 5} \right|\]

\[ \Rightarrow \frac{7 - 2 x_1}{2 x_1 - 5} = \pm 1\]

\[ \Rightarrow \frac{7 - 2 x_1}{2 x_1 - 5} = 1 \ or\frac{7 - 2 x_1}{2 x_1 - 5}=-1\]

\[ \Rightarrow 7 - 2 x_1 = 2 x_1 - 5 \ or \ 7 - 2 x_1 = - 2 x_1 + 5\]

\[ \Rightarrow 4 x_1 = 12 \ or \ 2 = 0 (\text {It is not true }.)\]

\[ \Rightarrow x_1 = 3\]

\[\text { and }\]

\[ y_1 = 6 x_1 - {x_1}^2 = 18 - 9 = 9\]

\[\therefore\left( x_1 , y_1 \right)=\left( 3, 9 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 21 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×