Advertisements
Advertisements
प्रश्न
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
पर्याय
(−3, −27)
(3, 9)
(7/2, 35/4)
(0, 0)
उत्तर
`(3, 9)`
Let (x1, y1) be the point where the given curve intersect the given line at the given angle.
\[\text { Since, the point lie on the curve } . \]
\[\text { Hence }, y_1 = 6 x_1 - {x_1}^2 \]
\[\text { Now,} y = 6x - x^2 \]
\[ \Rightarrow \frac{dy}{dx} = 6 - 2x\]
\[ \Rightarrow m_1 = 6 - 2 x_1 \]
\[\text { and }\]
\[x + y = 0\]
\[ \Rightarrow 1 + \frac{dy}{dx} = 0 \]
\[ \Rightarrow \frac{dy}{dx} = - 1\]
\[ \Rightarrow m_2 = - 1\]
\[\text { It is given that the angle between them is }\frac{\pi}{4}.\]
\[ \therefore \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]
\[ \Rightarrow \tan \frac{\pi}{4} = \left| \frac{6 - 2 x_1 + 1}{1 - 6 + 2 x_1} \right|\]
\[ \Rightarrow 1 = \left| \frac{7 - 2 x_1}{2 x_1 - 5} \right|\]
\[ \Rightarrow \frac{7 - 2 x_1}{2 x_1 - 5} = \pm 1\]
\[ \Rightarrow \frac{7 - 2 x_1}{2 x_1 - 5} = 1 \ or\frac{7 - 2 x_1}{2 x_1 - 5}=-1\]
\[ \Rightarrow 7 - 2 x_1 = 2 x_1 - 5 \ or \ 7 - 2 x_1 = - 2 x_1 + 5\]
\[ \Rightarrow 4 x_1 = 12 \ or \ 2 = 0 (\text {It is not true }.)\]
\[ \Rightarrow x_1 = 3\]
\[\text { and }\]
\[ y_1 = 6 x_1 - {x_1}^2 = 18 - 9 = 9\]
\[\therefore\left( x_1 , y_1 \right)=\left( 3, 9 \right)\]
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.