Advertisements
Advertisements
प्रश्न
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
उत्तर
\[ x = a\left( \theta - \sin \theta \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = a\left( 1 - \cos \theta \right)\]
\[ y = a\left( 1 - \cos \theta \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = a\left( \sin \theta \right)\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\left( \sin \theta \right)}{a\left( 1 - \cos \theta \right)} = \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = \cot \frac{\theta}{2}\]
\[\text { Now,} \]
\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{2}} =cot\left( \frac{\frac{\pi}{2}}{2} \right)=cot\left( \frac{\pi}{4} \right)=1\]
\[\text { Slope of the normal }=\frac{- 1}{\left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{2}}}=\frac{- 1}{1}=-1\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.