मराठी

Find the Equation of the Tangent to the Curve Y = √ 3 X − 2 Which is Parallel to the 4x − 2y + 5 = 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?

बेरीज

उत्तर

Slope of the given line is 2

\[\text { Let }\left( x_1 , y_1 \right)\text { be the point where the tangent is drawn to the curvey }= \sqrt{3x - 2}\]

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence }, y_1 = \sqrt{3 x_1 - 2} . . . \left( 1 \right)\]

\[\text { Now }, y = \sqrt{3x - 2}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{3}{2\sqrt{3x - 2}}\]

\[\text { Slope of tangent at} \left( x_1 , y_1 \right) =\frac{3}{2\sqrt{3 x_1 - 2}}\]

\[\text { Given that }\]

\[\text { Slope of tangent = slope of the given line }\]

\[ \Rightarrow \frac{3}{2\sqrt{3 x_1 - 2}} = 2\]

\[ \Rightarrow 3 = 4\sqrt{3 x_1 - 2}\]

\[ \Rightarrow 9 = 16\left( 3 x_1 - 2 \right)\]

\[ \Rightarrow \frac{9}{16} = 3 x_1 - 2\]

\[ \Rightarrow 3 x_1 = \frac{9}{16} + 2 = \frac{9 + 32}{16} = \frac{41}{16}\]

\[ \Rightarrow x_1 = \frac{41}{48}\]

\[\text { Now,} y_1 = \sqrt{\frac{123}{48} - 2} = \sqrt{\frac{27}{48}} = \sqrt{\frac{9}{16}} = \frac{3}{4} ..............\left[ \text { From }(1) \right]\]

\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{41}{48}, \frac{3}{4} \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{3}{4} = 2 \left( x - \frac{41}{48} \right)\]

\[ \Rightarrow \frac{4y - 3}{4} = 2\left( \frac{48x - 41}{48} \right)\]

\[ \Rightarrow 24y - 18 = 48x - 41\]

\[ \Rightarrow 48x - 24y - 23 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 16 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×