मराठी

Show that the Following Curve Intersect Orthogonally at the Indicated Point X2 = Y and X3 + 6y = 7 at (1, 1) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?

बेरीज

उत्तर

\[ x^2 = y . . . \left( 1 \right)\]

\[ x^3 + 6y = 7 . . . \left( 2 \right)\]

\[\text { Given point is }\left( 1, 1 \right)\]

\[\text { Differentiating (1) w.r.t.x, }\]

\[2x = \frac{dy}{dx}\]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = 2\left( 1 \right) = 2\]

\[\text { Differentiating (2) w.r.t.x, }\]

\[3 x^2 + 6\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x^2}{2}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = \frac{- 1}{2}\]

\[\text { Since,} m_1 \times m_2 = - 1\]

Hence,  the given curves intersect orthogonally at the given point.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.3 | Q 3.2 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


Let `y = f(x)` be the equation of the curve, then equation of normal is


Which of the following represent the slope of normal?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×