Advertisements
Advertisements
प्रश्न
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
उत्तर
Because the tangent to the curve at (x, y) is equally inclined to the coordinate axes, the angle made by the tangent with the axes can be \[\pm\] 45°
\[\therefore\frac{dy}{dx}=\text { Slope of the tangent }=\text { tan }\left( \pm 45 \right)=\pm1\] .
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
At (0, 0) the curve y = x3 + x
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.