Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
उत्तर
\[{xy=c}^2 \]
\[\text { Differentiating both sides w.r.t.x }, \]
\[x\frac{dy}{dx} + y = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( ct, \frac{c}{t} \right)\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( ct, \frac{c}{t} \right) =\frac{- \frac{c}{t}}{ct}=\frac{- 1}{t^2}\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{c}{t} = \frac{- 1}{t^2} \left( x - ct \right)\]
\[ \Rightarrow \frac{yt - c}{t} = \frac{- 1}{t^2} \left( x - ct \right)\]
\[ \Rightarrow y t^2 - ct = - x + ct\]
\[ \Rightarrow x + y t^2 = 2ct\]
\[\text{ Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{c}{t} = t^2 \left( x - ct \right)\]
\[ \Rightarrow yt - c = t^3 x - c t^4 \]
\[ \Rightarrow x t^3 - yt = c t^4 - c\]
APPEARS IN
संबंधित प्रश्न
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.