Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
उत्तर
\[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \]
\[\text { Differentiating both sides w.r.t.x }, \]
\[ \Rightarrow 2x c^2 + 2y c^2 \frac{dy}{dx} = x^2 2y \frac{dy}{dx} + 2x y^2 \]
\[ \Rightarrow \frac{dy}{dx}\left( 2y c^2 - 2 x^2 y \right) = 2x y^2 - 2x c^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x y^2 - x c^2}{y c^2 - x^2 y}\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( \frac{c}{\cos \theta}, \frac{c}{\sin \theta} \right) \]
\[=\frac{\frac{c^3}{\cos \theta \sin^2 \theta} - \frac{c^3}{\cos \theta}}{\frac{c^3}{\sin\theta} - \frac{c^3}{\cos^2 \theta \sin\theta}}\]
\[ = \frac{\frac{1 - \sin^2 \theta}{\cos\theta \sin^2 \theta}}{\frac{\cos^2 \theta - 1}{\cos^2 \theta \sin\theta}}\]
\[ = \frac{co s^2 \theta}{\cos \theta \sin^2 \theta} \times \frac{\cos^2 \theta \sin\theta}{- \sin^2 \theta}\]
\[ = \frac{- \cos^3 \theta}{\sin^3 \theta}\]
\[\text { Given }\left( x_1 , y_1 \right) = \left( \frac{c}{\cos \theta}, \frac{c}{\sin \theta} \right)\]
\[\text { Equation of tangent is},\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{c}{\sin \theta} = \frac{- \cos^3 \theta}{\sin^3 \theta} \left( x - \frac{c}{\cos \theta} \right)\]
\[ \Rightarrow \frac{y\sin\theta - c}{\sin\theta} = \frac{- \cos^3 \theta}{\sin^3 \theta}\left( \frac{x \cos\theta - c}{\cos\theta} \right)\]
\[ \Rightarrow \sin^2 \theta\left( y \sin\theta - c \right) = - \cos^2 \theta\left( x\cos\theta - c \right)\]
\[ \Rightarrow y \sin^3 \theta - c \sin^2 \theta = - x \cos^3 \theta + c \cos^2 \theta\]
\[ \Rightarrow x \cos^3 \theta + y \sin^3 \theta = c\left( si n^2 \theta + \cos^2 \theta \right)\]
\[ \Rightarrow x \cos^3 \theta + y \sin^3 \theta = c\]
\[\text { Equation of normal is},\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{c}{\sin \theta} = \frac{\sin^3 \theta}{\cos^3 \theta}\left( x - \frac{c}{\cos \theta} \right)\]
\[ \Rightarrow \cos^3 \theta\left( y - \frac{c}{\sin \theta} \right) = \sin^3 \theta\left( x - \frac{c}{\cos \theta} \right)\]
\[ \Rightarrow y \cos^3 \theta - \frac{c \cos^3 \theta}{\sin\theta} = x \sin^3 \theta - \frac{c \sin^3 \theta}{\cos\theta}\]
\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = \frac{c \sin^3 \theta}{\cos\theta} - \frac{c \cos^3 \theta}{\sin\theta}\]
\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = c\left( \frac{\sin^4 \theta - \cos^4 \theta}{\cos\theta \sin\theta} \right)\]
\[ \Rightarrow x \sin^3 \theta - y \cos^3 \theta = c\left[ \frac{\left( \sin^2 \theta + \cos^2 \theta \right)\left( \sin^2 \theta - \cos^2 \theta \right)}{\cos\theta \sin\theta} \right]\]
\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta =\]
\[ 2c \left[ \frac{- \left( \cos^2 \theta - \sin^2 \theta \right)}{2\cos\theta \sin\theta} \right]\]
\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta = 2c\left[ \frac{- \cos \left( 2\theta \right)}{\sin\left( 2\theta \right)} \right]\]
\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta = - 2c \text { cot }\left( 2\theta \right)\]
\[ \Rightarrow \sin^3 \theta - y \cos^3 \theta + 2c \text { cot }\left( 2\theta \right) = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the angle of intersection of the curves y2 = x and x2 = y.
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.