मराठी

Find the Equation of the Normal to Y = 2x3 − X2 + 3 at (1, 4) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?

उत्तर

\[y = 2 x^3 - x^2 + 3\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[\frac{dy}{dx} = 6 x^2 - 2x\]

\[\text { Slope of tangent } = \left( \frac{dy}{dx} \right)_\left( 1, 4 \right) =6 \left( 1 \right)^2 -2\left( 1 \right)=4\]

\[\text { Slope of normal } =\frac{- 1}{\text { Slope of tangent}}=\frac{- 1}{4}\]

\[\text { Given }\left( x_1 , y_1 \right) = \left( 1, 4 \right)\]

\[\text { Equation of normal is},\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 4 = \frac{- 1}{4} \left( x - 1 \right)\]

\[ \Rightarrow 4y - 16 = - x + 1\]

\[ \Rightarrow x + 4y = 17\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 2 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Let `y = f(x)` be the equation of the curve, then equation of normal is


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×