मराठी

Find the Condition for the Following Set of Curve to Intersect Orthogonally X 2 a 2 + Y 2 B 2 = 1 and X 2 a 2 − Y 2 B 2 = 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?

उत्तर

The condition for the curves \[a x^2 + b y^2 = 1 \text { and }a' x^2 + b' y^2 = 1\] to intersect orthogonally is given below :

\[\frac{1}{a} - \frac{1}{b} = \frac{1}{a'} - \frac{1}{b'}\]

\[\text { So, the condition for the curves } \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and }\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1 to \text { intersect orthogonally is }\]

\[\frac{1}{\frac{1}{a^2}} - \frac{1}{\frac{1}{b^2}} = \frac{1}{\frac{1}{A^2}} - \frac{1}{\frac{- 1}{B^2}}\]

\[ \Rightarrow a^2 - b^2 = A^2 + B^2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.3 | Q 8.2 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


The curve y = `x^(1/5)` has at (0, 0) ______.


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×