Advertisements
Advertisements
प्रश्न
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
उत्तर
Let (x1, y1) be the required point.
Slope of the given line = \[\frac{- 1}{6}\]
∴ Slope of the line perpendicular to it = 6
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence}, y_1 = 3 {x_1}^2 + 4\]
\[\text { Now,} y = 3 x^2 + 4\]
\[ \therefore \frac{dy}{dx} = 6x\]
\[\text { Now, }\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =6 x_1 \]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text{Slope of the given line [Given]}\]
\[ \therefore 6 x_1 = 6\]
\[ \Rightarrow x_1 = 1\]
\[\text {and }\]
\[ y_1 = 3 {x_1}^2 + 4 = 3 + 4 = 7\]
\[\text { Thus, the required point is }\left( 1, 7 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Let `y = f(x)` be the equation of the curve, then equation of normal is
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.