मराठी

Find the Point on the Curve Y = 3x2 + 4 at Which the Tangent is Perpendicular to the Line Whose Slop is − 1 6 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?

बेरीज

उत्तर

Let (x1y1) be the required point.
Slope of the given line = \[\frac{- 1}{6}\]

∴ Slope of the line perpendicular to it = 6

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence}, y_1 = 3 {x_1}^2 + 4\]

\[\text { Now,} y = 3 x^2 + 4\]

\[ \therefore \frac{dy}{dx} = 6x\]

\[\text { Now, }\]

\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =6 x_1 \]

\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text{Slope of the given line [Given]}\]

\[ \therefore 6 x_1 = 6\]

\[ \Rightarrow x_1 = 1\]

\[\text {and }\]

\[ y_1 = 3 {x_1}^2 + 4 = 3 + 4 = 7\]

\[\text { Thus, the required point is }\left( 1, 7 \right).\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.1 | Q 13 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Let `y = f(x)` be the equation of the curve, then equation of normal is


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×