Advertisements
Advertisements
प्रश्न
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
उत्तर
As per the given condition,
`("d"theta)/"dt" = 2 "d"/"dt" (sin theta)`
⇒ `("d"theta)/"dt" = 2 cos theta * ("d"theta)/"dt"`
⇒ 1 = 2 cos θ
∴ cos θ = `1/2`
⇒ cos θ = `cos pi/3`
⇒ θ = `pi/3`
Hence, the required angle is `pi/3`.
APPEARS IN
संबंधित प्रश्न
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the angle of intersection of the curves y2 = x and x2 = y.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The curve y = `x^(1/5)` has at (0, 0) ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.