Advertisements
Advertisements
प्रश्न
Find the approximate value of (1.999)5.
उत्तर
(1.999)5 = (2 – 0.001)5
Let x = 2 and Δx = – 0.001
Let y = x5
Differentiating both sides w.r.t, x, we get
`"dy"/"dx"` = 5x4 = 5(2) = 80
Now Δy = `("dy"/"dx") * Δx`
= 80 · (– 0.001)
= – 0.080
∴ (1.999)5 = y + Δy
= x5 – 0.080
= (2)5 – 0.080
= 32 – 0.080
= 31.92
Hence, approximate value of (1.999)5 is 31.92.
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of (4.01)3
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : 32.01, given that log 3 = 1.0986
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866