Advertisements
Advertisements
प्रश्न
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
उत्तर
Internal radius r = 3 cm
And external radius R = r + Δr = 3.0005 cm
∴ Δr = 3.0005 – 3 = 0.0005 cm
Let y = r3
⇒ y + Δy = (r + Δr)3
= R3
= (3.0005)3 ......(i)
Differentiating both sides w.r.t., r, we get
`"dy"/"dr"` = 3r2
∴ Δy = `"dy"/"dr" xx Δ"r"` = 3r2 × 0.0005
= 3 × (3)2 × 0.0005
= 27 × 0.0005
= 0.0135
∴ (3.0005)3 = y + Δy .....[From equation (i)]
= (3)3 + 0.0135
= 27 + 0.0135
= 27.0135
Volume of the shell = `4/3 pi ["r"^3 - "r"^3]`
= `4/3 pi [27.0135 - 27]`
= `4/3 pi xx 0.0135`
= 4π × 0.005
= 4 × 3.14 × 0.0045
= 0.018π cm3
Hence, the approximate volume of the metal in the shell is 0.018π cm3.
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : loge(101), given that loge10 = 2.3026.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Using differentials, find the approximate value of `sqrt(0.082)`
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866