मराठी

Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively - Mathematics

Advertisements
Advertisements

प्रश्न

Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively

बेरीज

उत्तर

Internal radius r = 3 cm

And external radius R = r + Δr = 3.0005 cm

∴ Δr = 3.0005 – 3 = 0.0005 cm

Let y = r3

⇒ y + Δy = (r + Δr)3

= R3

= (3.0005)3   ......(i)

Differentiating both sides w.r.t., r, we get

`"dy"/"dr"` = 3r2

∴ Δy = `"dy"/"dr" xx Δ"r"` = 3r2 × 0.0005

= 3 × (3)2 × 0.0005

= 27 × 0.0005

= 0.0135

∴ (3.0005)3  = y + Δy   .....[From equation (i)]

= (3)3 + 0.0135

= 27 + 0.0135

= 27.0135

Volume of the shell = `4/3 pi ["r"^3 - "r"^3]`

= `4/3 pi [27.0135 - 27]`

= `4/3 pi xx 0.0135`

= 4π × 0.005

= 4 × 3.14 × 0.0045

= 0.018π cm3

Hence, the approximate volume of the metal in the shell is 0.018π cm3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 7 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : loge(101), given that loge10 = 2.3026.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Using differentials, find the approximate value of `sqrt(0.082)`


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×