Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
उत्तर
\[\text { Consider the function y } = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]
\[\text { Let }: \]
\[ x = 256\]
\[x + ∆ x = 255\]
\[\text { Then}, \]
\[ ∆ x = - 1\]
\[\text { For } x = 256, \]
\[ y = \left( 256 \right)^\frac{1}{4} = 4\]
\[\text { Let }: \]
\[ dx = ∆ x = - 1\]
\[\text { Now,} y = \left( x \right)^\frac{1}{4} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 256} = \frac{1}{256}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{256} \times - 1 = \frac{- 1}{256}\]
\[ \Rightarrow ∆ y = \frac{- 1}{256} = - 0 . 003906\]
\[ \therefore \left( 255 \right)^\frac{1}{4} = y + ∆ y = 3 . 99609 \approx 3 . 9961\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : (3.97)4
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]