मराठी

Using Differential, Find the Approximate Value of the ( 255 ) 1 4 . - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?

बेरीज

उत्तर

\[\text { Consider the function y } = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]

\[\text { Let }: \]

\[ x = 256\]

\[x + ∆ x = 255\]

\[\text { Then}, \]

\[ ∆ x = - 1\]

\[\text { For } x = 256, \]

\[ y = \left( 256 \right)^\frac{1}{4} = 4\]

\[\text { Let }: \]

\[ dx = ∆ x = - 1\]

\[\text { Now,} y = \left( x \right)^\frac{1}{4} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 256} = \frac{1}{256}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{256} \times - 1 = \frac{- 1}{256}\]

\[ \Rightarrow ∆ y = \frac{- 1}{256} = - 0 . 003906\]

\[ \therefore \left( 255 \right)^\frac{1}{4} = y + ∆ y = 3 . 99609 \approx 3 . 9961\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.06 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : (3.97)4 


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×