Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
उत्तर
\[\text { Consider the function y } = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]
\[\text { Let }: \]
\[ x = 256\]
\[x + ∆ x = 255\]
\[\text { Then}, \]
\[ ∆ x = - 1\]
\[\text { For } x = 256, \]
\[ y = \left( 256 \right)^\frac{1}{4} = 4\]
\[\text { Let }: \]
\[ dx = ∆ x = - 1\]
\[\text { Now,} y = \left( x \right)^\frac{1}{4} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 256} = \frac{1}{256}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{256} \times - 1 = \frac{- 1}{256}\]
\[ \Rightarrow ∆ y = \frac{- 1}{256} = - 0 . 003906\]
\[ \therefore \left( 255 \right)^\frac{1}{4} = y + ∆ y = 3 . 99609 \approx 3 . 9961\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : tan–1 (1.001)
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Find the approximate value of (1.999)5.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.