हिंदी

Using Differential, Find the Approximate Value of the ( 255 ) 1 4 . - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?

योग

उत्तर

\[\text { Consider the function y } = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]

\[\text { Let }: \]

\[ x = 256\]

\[x + ∆ x = 255\]

\[\text { Then}, \]

\[ ∆ x = - 1\]

\[\text { For } x = 256, \]

\[ y = \left( 256 \right)^\frac{1}{4} = 4\]

\[\text { Let }: \]

\[ dx = ∆ x = - 1\]

\[\text { Now,} y = \left( x \right)^\frac{1}{4} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 256} = \frac{1}{256}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{256} \times - 1 = \frac{- 1}{256}\]

\[ \Rightarrow ∆ y = \frac{- 1}{256} = - 0 . 003906\]

\[ \therefore \left( 255 \right)^\frac{1}{4} = y + ∆ y = 3 . 99609 \approx 3 . 9961\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.06 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : tan–1 (1.001)


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Find the approximate value of (1.999)5.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×