हिंदी

Using Differential, Find the Approximate Value of the ( 15 ) 1 4 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?

योग

उत्तर

\[\text { Consider the function } y = f\left( x \right) = x^\frac{1}{4} . \]

\[\text{ Let }: \]

\[ x = 16 \]

\[x + ∆ x = 15\]

\[\text { Then }, \]

\[ ∆ x = - 1\]

\[\text { For } x = 16, \]

\[ y = \left( 16 \right)^\frac{1}{4} = 2\]

\[\text { Let }: \]

\[ dx = ∆ x = - 1\]

\[\text { Now }, y = \left( x \right)^\frac{1}{4} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 16} = \frac{1}{32}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{32} \times \left( - 1 \right) = \frac{- 1}{32}\]

\[ \Rightarrow ∆ y = \frac{- 1}{32} = - 0 . 03125\]

\[ \therefore \left( 15 \right)^\frac{1}{4} = y + ∆ y = 1 . 96875\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.05 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Using differentials, find the approximate value of `sqrt(0.082)`


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×