Advertisements
Advertisements
प्रश्न
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
उत्तर
Let f(x) = cos x
Then f'(x) = `d/dx(cosx) = -sin x`
Take a = 60° = `pi/(3)` and
h = 30°
= `(1/2)°`
= `(1/2 xx 00175)°`
= 0.00875°
Then f(a) = `f(pi/3)`
= `cos pi/(3)`
= `(1)/(2)`
= 0.5
f'(a) = `f'(pi/3)`
= `-sin pi/(3)`
= `-sqrt(3)/(2)`
= `-(1732)/(2)`
= – 0.866
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ cos(60° 30°)
= f(60° 30°)
= `f(pi/3 + 0.00875)`
≑ `f(pi/3) + 0.00875.f'(pi/3)`
≑ 0.5 + (0.00875) (– 0.8660)
≑ 0.5 – 0.0075775
= 0.4924225
π cos(60° 30°) ≑ 0.4924.
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
If loge 4 = 1.3868, then loge 4.01 =
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The approximate value of (33)1/5 is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of (4.01)3
Find the approximate values of : tan–1(0.999)
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Find the approximate value of (1.999)5.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is