हिंदी

While Measuring the Side of an Equilateral Triangle an Error of K % is Made, the Percentage Error in Its Area is - Mathematics

Advertisements
Advertisements

प्रश्न

While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is

विकल्प

  • k %

  • 2k %

  • \[\frac{k}{2}\%\]

  • 3k %

MCQ

उत्तर

2k%
Let x be the side of the triangle and be its area.

\[\frac{∆ x}{x} \times 100 = k\]

\[\text { Also }, y = \frac{\sqrt{3}}{4} x^2 \]

\[ \Rightarrow \frac{dy}{dx} = \frac{\sqrt{3}}{2}x\]

\[ \Rightarrow \frac{∆ y}{y} = \frac{\sqrt{3}x}{2y}dx = \frac{2}{x} \times \frac{kx}{100}\]

\[ \Rightarrow \frac{∆ y}{y} \times 100 = 2k\]

\[\text { Hence, the error in the area of the triangle is } 2k  .\] %

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.3 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 5 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


If loge 4 = 1.3868, then loge 4.01 =


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


Find the approximate values of : (3.97)4 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×