हिंदी

If There is an Error of A% in Measuring the Edge of a Cube, Then Percentage Error in Its Surface is - Mathematics

Advertisements
Advertisements

प्रश्न

If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is

विकल्प

  • 2a%

  • \[\frac{a}{2} \%\]

  • 3a%

  • none of these

MCQ

उत्तर

(a) 2a%
Let x be the side of the cube and y be its surface area.

\[\frac{∆ x}{x} \times 100 = a\]

\[\text { Also }, y = 6 x^2 \]

\[ \Rightarrow \frac{dy}{dx} = 12x\]

\[ \Rightarrow \frac{∆ y}{y} = \frac{12x}{y} \times dx = \frac{2}{x} \times \frac{ax}{100}\]

\[ \Rightarrow \frac{∆ y}{y} \times 100 = 2a\]

\[\text { Hence, the error in the surface area is} \text{ 2a}  .\] %

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.3 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 2 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : `root(3)(28)`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : e0.995, given that e = 2.7183.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×